Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2253898

ABSTRACT

Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.


Subject(s)
Antineoplastic Agents , Transition Elements , Antineoplastic Agents/pharmacology , Cell Line , Cell Cycle Checkpoints
2.
BioChem ; 2(2):145-159, 2022.
Article in English | MDPI | ID: covidwho-1855500

ABSTRACT

In this contribution, we provide an overview of gold compound applications against viruses or parasites during recent years. The special properties of gold have been the subject of intense investigation in recent years, which has led to the development of its chemistry with the synthesis of new compounds and the study of its applicability in various areas such as catalysis, materials, nanotechnology and medicine. Herein, thirteen gold articles with applications in several viruses, such as hepatitis C virus (HCV), influenza A virus (H1N1), vesicular stomatitis virus (VSV), coronavirus (SARS-CoV and SARS-CoV-2), Dengue virus, and several parasites such as Plasmodium sp., Leishmania sp., Tripanossoma sp., Brugia sp., Schistosoma sp., Onchocerca sp., Acanthamoeba sp., and Trichomonas sp. are described. Gold compounds with anti-viral activity include gold nanoparticles with the ligands mercaptoundecanosulfonate, 1-octanethiol and aldoses and gold complexes with phosphine and carbene ligands. All of the gold compounds with anti-parasitic activity reported are gold complexes of the carbene type. Auranofin is a gold drug already used against rheumatoid arthritis, and it has also been tested against virus and parasites.

3.
Biochem ; 2(1):8, 2022.
Article in English | ProQuest Central | ID: covidwho-1818044

ABSTRACT

Polyoxometalates (POMs) are clusters of units of oxoanions of transition metals, such as Mo, W, V and Nb, that can be formed upon acidification of neutral solutions. Once formed, some POMs have shown to persist in solution, even in the neutral and basic pH range. These inorganic clusters, amenable of a variety of structures, have been studied in environmental, chemical, and industrial fields, having applications in catalysis and macromolecular crystallography, as well as applications in biomedicine, such as cancer, bacterial and viral infections, among others. Herein, we connect recent POMs environmental applications in the decomposition of emergent pollutants with POMs’ biomedical activities and effects against cancer, bacteria, and viruses. With recent insights in POMs being pure, organic/inorganic hybrid materials, POM-based ionic liquid crystals and POM-ILs, and their applications in emergent pollutants degradation, including microplastics, are referred. It is perceived that the majority of the POMs studies against cancer, bacteria, and viruses were performed in the last ten years. POMs’ biological effects include apoptosis, cell cycle arrest, interference with the ions transport system, inhibition of mRNA synthesis, cell morphology changes, formation of reaction oxygen species, inhibition of virus binding to the host cell, and interaction with virus protein cages, among others. We additionally refer to POMs’ interactions with various proteins, including P-type ATPases, aquoporins, cinases, phosphatases, among others. Finally, POMs’ stability and speciation at physiological conditions are addressed.

4.
Coordination Chemistry Reviews ; 447:214143, 2021.
Article in English | ScienceDirect | ID: covidwho-1363110

ABSTRACT

Polyoxovanadates (POVs) are a subclass of a larger family of polyanionic group V and VI metal-oxo clusters that are known as polyoxometalates (POMs). POMs have been found to have antidiabetic, antibacterial, antiprotozoal, antiviral and anticancer activities, which have sparked interest in their use as bioinorganic drugs. Among POVs, decavanadate ([V10O28]6−;V10) is an isopolyoxovanadate recently described to have several medicinal applications. In the present review, recent insights into POVs with emergent anticancer, antimicrobial and antiviral applications are described. Additionally, POVs’ stability and speciation under experimental biological conditions as well as POVs (in particular, V10) in vivo and ex-vivo effects are highlighted. Finally, we report the most important 21st century studies of POVs’ effects and/or targets against cancer, bacteria and viruses including: apoptosis, cell cycle arrest, interference with ions transport system, inhibition of mRNA synthesis, cell morphology changes, changes in metabolic pathways, phosphorylase enzyme inhibition and cell signaling, formation of reactive oxygen species, lipid peroxidation, inhibition of viral mRNA polymerase, inhibition of virus binding to the host cell, penetration and interaction with virus protein cages.

5.
Metals ; 11(5):828, 2021.
Article in English | ProQuest Central | ID: covidwho-1244069

ABSTRACT

The application of metals in biological systems has been a rapidly growing branch of science. Vanadium has been investigated and reported as an anticancer agent. Melanoma is the most aggressive type of skin cancer, the incidence of which has been increasing annually worldwide. It is of paramount importance to identify novel pharmacological agents for melanoma treatment. Herein, a systematic review of publications including “Melanoma and Vanadium” was performed. Nine vanadium articles in several melanoma cells lines such as human A375, human CN-mel and murine B16F10, as well as in vivo studies, are described. Vanadium-based compounds with anticancer activity against melanoma include: (1) oxidovanadium(IV);(2) XMenes;(3) vanadium pentoxide, (4) oxidovanadium(IV) pyridinonate compounds;(5) vanadate;(6) polysaccharides vanadium(IV/V) complexes;(7) mixed-metal binuclear ruthenium(II)–vanadium(IV) complexes;(8) pyridoxal-based oxidovanadium(IV) complexes and (9) functionalized nanoparticles of yttrium vanadate doped with europium. Vanadium compounds and/or vanadium materials show potential anticancer activities that may be used as a useful approach to treat melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL